DASM
ASSEMBLER

CONMPUSENSE

Software for Dragon/Tandy

DASM Assemhler INDEX

WHAT IS AN “ASSEMBLER" 1

HOW TO WRITE AN ASSEMBLY CODE FROGRAM 2

INSTRUCTIONS

LABELS

OPERANDS 2
Typea of Operand
Immediate Operands ¥
Direct Operands
Indexed Operands 4

Constant Offset
Aecumulator Offaet

Auto-Increment/Decrement 4
Program Counter Relative 5
Indirect Modes 6
Extended T

COMMENTS
ASSEMBLER DIRECTIVES T
END T
EQU RMB FDB FCC a8
ORG DSP PRT OFF ALL 9
ERR FML FMS PAG FPO 10
HOW TO ASSEMBLE AND RUN YOUR PROGRAM 11
GETTING THE BUGS OUT OF YOUR PROGRAM 12
ERROR MESSAGES 13
ERROR INDICATOR 14
SAVING YOUR PROGRAM ON TAPE 14
SAMPLE PROGRAM 15

Copyright Compusense Ltd. 1983 All Rights Reaserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

WHAT IS AN “ASSEMBLER"

You can't avoid references to "machine code” or "assembler language"
when talking about computera or microprocessors. This is because a
computer worka with numbera and is controlled using numbers. These
numberas are the "machine code”.

The firat computers were programmed using machine code and, as you might
have guesaed, it was quite difficult and slow.

Assembler programs were developed to make the job of programming the
computers easier by giving an easily remembered name (mnemonic) to each
different machine code instruction. This was called "assembly language".

The computer was then able to assemble {(i.e. translate) the assembly
language program into machine code which it could understand.

The DASM Assembler performs this same function on your own computer to

allow you to make full use of the 6809 microprocessor inside your DRAGON
(or TANDY COLOR COMPUTER).

The remainder of this booklet explains how to write assembly language
and how to use the assembler. It is not intended to be a complete
textbook on the programming of the 6809. However it does contain useful
information and examples.

Please read this manual carefully before attempting to use DASM. You are
recommended to try the Sample Program on page 20 as a firat step in
using DASM.

NOTE: in thias manual the number zero is "0" be careful not to confuse
this with the letter "0".

CAUTION: YOU MUST SWITCH OFF YOUR CONMPUTER WHEN INSEERTING OR
REMOVING ANY CARTRIDGE.

Copyright Compusense Ltd. 1983 - Page 1 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY
HOW TO WRITE AN ASSEMBLY CODE PROGRAN

INSTRUCTIORS

The DASM Asasembler Cartridge and Manual are supplied with a 6809
Reference Card. All the names of the instructions that you can use with
the 6809 microprocessor are on this card. When you have mastered the
programming of the 6809 you will be able to write your programs using
this card occaaionally. However until then you will need a good book on
6809 Assembler Programming.

The Assembly instructions are typed in and edited exactly aas for BASIC

programs. Several inatructions may be written aeperated by a ":~ just as
in BASIC. For Example:

0120 CLRA:CLRB

Note: asome extra inatructiona to control DASM are deacribed elsewere in
a section called "Assembler Directivea”.

LABELS

Any instruction may be identified by a LABEL.

For example:
1000 @START LDX O,T:@LOOF CLE O,X+:CHFX 2,Y:BLS @LOOP

The label is optiornal (except on the EQU Assembler Directive
inatruction - see below). A label is used to identify a data locatien or
an instruction. Labels always astart with an @ character and may have
any number of alphabetic or numeric characters (i.e. A to Z and O to 9).
If you use a label with more than six character after the & the only the
first 5 characters and the last characters are used. (i.e. the label
@LABEL!1 is treated exactly as GLABEL11 or @LABEL1111111111),

A label has a effective numeric value. In the case of GSTART in the
above example this is the actual location, in the memory of the
computer, of the LDX inatruction.

OPERANDS

Most inatructions must have an OPERAND. These are all instructiona
except those which are of the INHERENT type. For example: the CLR

instruction must have an operand but CLRA is of the INHERENT type and
does not have an operand (in fact the A register is the operand). In the
example above O,X+ is an operand of the Indexed type.

Copyright Compusense Ltd. 1983 - Page 2 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

Typeas of Operand

There are four types of operand:

1) IMMEDIATE
2) DIRECT

3) INDEXED
4) EXTENDED

Zach type must be coded in it's own particular way.

In the deascriptions below, the symbol N will be used to represent a
numeric value. This may be in any of the forms as shown:

a) decimal number eg. 123

b) hexadecimal number eg. $9AB

¢) literal constant eg. 'A (= 341 or 65)

d) the current addreas eg. ¥

{this is the value that a label on the same instruction would have)
e) label @g. GSTART

f) any simple sum formed from the terms above (i.e uaing + or -)
eg. *-GSTART+SAB='A=123

Immediate Operands

An immediate operand atarts with a "#" character in the general format:
#0 . eg. LDD #1234.

Note: The EXG and TFR instructions have a different form
specifying a pair of registers eg. EXG A,B. The PSH and PUL instructionas
can be coded with a list of registers. eg. PULS A,B,PC.

Register names used in EXG, TFR, PSH and PUL are: A BD X Y U 5 PC CC DP

Direct Operands

A direct operand starts with a ">" character in the general format >N .
eg. STB >$8A .

Direct Addressing mode is used in conjunction with the Direct Page
register which forms the most significant byte of the addresa. The
Direct Operand forms the least significant byte of the address.

i.e. if the DP register contains O (zero) then the above example atores
the contents of regiaster B at location 300BA.

Note: the DP register may be set using ZXC, TFR of PUL instructions.
This should normally be avoided or done with care as unpredictable
results may occur if the DP register is not reatored when returning to
BASIC.

Copyright Compusense Ltd. 19835 - Page % -~ All righta Heserved

DASM - Two Paas Symbolic Assembler for DRAGON/TANDY
Indexed Operands
The indexed addreasing modesa allow a variety of waya of uaing data in
the 6809 regiaters to reference information in memory.In fact the power

and flexibility of this indexed addressing mode is the main reason for
the 6809 being called "the Programmer's Micro".

The indexed modea are grouped together aa : Constant Offaet, Accumulator
Offset, Auto-Increment/Decrement and Indirect Modes.

In the tollowing desciptions the symbol R atand for the X,Y,U or 5
regiasters,

Constant Uffaet

General Format: ,R or HN,E . (,R is the same as O,R)

Example:

1001 LDY #1234 LOAD Y REC WITH IMMEDIATE VALUE 12%4
1005 LDA Y LOAD A REG FRON MEMORY LOCATION 1234
1005 LDB 5,Y LOAD B REG FROM MEMORY LOCATION 12%9

Acummulator Offsat

General Format: A,k B,B or D,R. This mode is similar to the
Conatant Offset above except that the offset is actually in the A, B or
D Register. This is a very powerful feature and gives, for inatance, an
sasy vway of uaing tables.

Examplae:
1010 LDY #TABLE LOAD ADDEESS OF TABLE
1012 LDA @INCHAR GET CHARACTER TO TRANSLATE
1014 LDA A,Y GET TRANSLATION OF CHARACTER

Auto-Increment/Decrement

Auto-Increment Formata ,8* and ,R++
Auto=Decrement Formats -8 and ,-=-R

This indexing mode ia especially useful in program loops to proceas a
table or liast. Each time that the inatruction is executed the index
regiaster {I, I, U or S) is incremented (or decremented) by 1 or 2. The
difference in the notation between the auto-increment (the + is after
the regiater) and the auto-decrement (the - is before the register) is
to remind you, the programmer, that the index register is I[NCREMENTED
AFTER the inastruction is carried out but DECREMENTED BEFORE by the

number of “+" or "-" asigns.

Copyright Compusense Ltd. 1983 - Page 4 - All rights Reserved

0110 LDX #1000
0120 LDX #1020
0130 LDB #10
0140 BSR @REVERSE

0250 @REVERSE BEQU *
0260 LDA ,X+ GET A BYTE FROM THE INPUT FIELD
0270 STA ,=Y MOVE TO REVERSED FIELD

0280 DECB COUNT

0290 BNE @REVERSE LOOP UNTIL B IS ZERO

0%00 RTS

Thia example shows how auto-increment and auto-decrement can be used to
move a list of 10 charactera in reverse order.

The character at location 1000 ia moved to 1019
(1] L1] L1 B 1 ﬂﬂ‘ il i [T] l ﬂ.] B

i L L] L]

= i " " 1009 " " " 1010,

Program Counter Relative

Formats: HN,PCR (B/16 bit offset) N, PCRB (B bit offset)

This mode is particularly important when writing programs which are to
be RELOCATABLE. Thia means that the program must still work when it ia
copied to a different place in the memory of the computer. This can be
difficult (if not impossible) with some microprocessors but is
eapecially easy with the 6809 because of the PC Relative Mode.

When you use the PC Relative Mode the DASM Asasembler calculates the
offaset from the value of the Program Counter {PC Register). If your
program is relocated then the value in the PC register will be different
but the relative offset will be the same.

Example:

This ahowa how the previous example (for Auto-increment/decrement) can
be made RELOCATABLE using PC Relative indexing.

0010 @DATA BRMB 20 DEFINES THE DATA AREA
0110 LEAX @DATA,PCR

0120 LEAY @DATA+20,PCR

0130 LDB #10

0140 BSR @REVERSE

Copyright Compusense Ltd. 1983 - Page 5 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

Note: PCR sometimes gives a 16 bit offset where a 3 bit offset is
sufficient (i.e. were a reference is made to a label later in the
program). If you want this to be an 8 bit offset then use PCRB.

Example:
1500 LDA @WALUE,PCRB
3300 GVALUE FCB 55
Indirect Modes

To the newcomer to asaembler programming the indirect addressing modes
can be very difficult to understand and use. Good prLrams can be written
without uasing indirect addresaing at all. However vhen deaigning your
program it is worthwhile considering whether indirect addressing
techniquea can be used advantageously. This often means choosing a
design which uses pointers and tableas.

The formats for indirect operands are as followa:

Constant Offset (,R) (H,R)
Accumulator Offaet (A,R) (e,k) (D,R)
Auto-Increment/Decrement (,B++) (,--R)

PC Relative (W,PCR) (N,PCRB)
Extended (W)

Note 1 : Because of the limited keyboard layout of the DRAGON and TANDY
computers the DASM assembler allowa both round () or square brackets

to be use in indirect notation. The standard Motorcla notation uses
square brackets only for indirect operanda.

Note 2: the single increment/decrement forms (i.e. ,B* and ,-R) are not
allowed for the indirect mode.

Note 3: the Extended Indirect format is a special case and treated as an
indexed format operand.

The Indirect Mode works by first calculating the operand inside the
aquare bracketas. This gives the location not of the data, but of a
pointer to the data.

For example:

2000 LDA (@POINTER) LOADS "X™ INTO REG A
3000 @POINTER FDB @DATA

4000 @DATA FCC "X"

Copyright Compusense Ltd. 1983 - Page 6 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

Extended

Format: H . This is the simpleat way of referencing a apecific
location in memory.

For example:
1000 @DATA EQU 1000

%iéﬁ LDA @DATA LOAD THE CHARACTER AT LOCATION 1000
4310 STA $400 STORE AT LOCATION $400 = 1024

Wote that the extended mode gives RELOCATABLE code only when it is used
to reference data or subroutinea which are always in the same place.
(eg. in the DEMON monitor or the BASIC ROM or Reserved Areasa).

COMMENTS

DASM allows you to write two types of comment:

a) after the operand (if there is one)

for example: 1010 CLR O0,X+ CLEAR HEXT BITE
1020 CLRA CLEAR REGISTER A

b) as a separate line atarting with "*"

for example: 2010 ®* THIS IS A COMMENT
2020 CLRA:® THIS IS ALSO A COMMENT

liote: If you use the second type of comment then the reat of the line is

treated aa a comment even if you code a ": and another instruction.

ASSEMBLER DIRECTIVES

You #will have noticed in the examples aome extra instructions which are
not described on your 6809 Reference Card (i.e. EQU FCC ZMB). These are
instructions to the DASM Assembler to do easential taaks auch as
reserving apace for data.

END

This is the most important Assembler Directive as it must be coded as
the last line of your Assembler Program. END may have an operand which
is the atart address of your program. For example :-

10 @START EQU *

program lines

799 =ND SSTART

Copyright Compusense Ltd. 1933 - Page T - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

The END statement has put the value of @TART into the register used by
BASICs EXEC command. When DASM has finished aimply enter EXEC and the
machine code program will begin working from GS5TART. Any label can be
used for thias purpose and it need not be at the beginning of the
program. The EXEC statement can be part of the BASIC program following
the end of the DASM assembly. Note if another EXEC is used at any time
then the value aset by DASM will be overwritten.

EQU

This is very useful as it allows a label to be defined without
generating any machine code. This label may be a data location or a data
value which is used in many places in your program but may change.

For example:
4000 @TABLE EQU *
4005 ENB 100 HRESERVE 100 BYTES FOR TABLE
4010 GLENCTH EQU *-@TABLE LENGTH OF TABLE
RMB
This is used (as in the above ax&mplu] to reaerve apace in your program
for data.

FCB

This generates one or more constant bytes (8 bits) of data in your
program.

For example:

2000 FCB O,$FF.-3,5+312
FDB
This is aimilar to PCB but generates 2 character (16 bit) constants.
For example:

2010 FDB 31234 ,@LABEL
FCC
This is again similar to FCB but allows a strings of characters to be
defined as a conatant. As in ¥CB a single byte (8 bit) constant may also
be defined. This is useful as a delimiter for the atring. The string
must start and end with a ® character. If you want a " in the string
then type twa " characters.

For example:

2020 FCC “AB""CD",4 AB"CD FOLLOWED BY 304

Copyright Compusenae Ltd. 1983 - Page 3 - All righta Reserved

DASM - Two Pasa Symbolic Assembler for DRAGON/TANDY

ORG

Thia is used to tell DASM where to put the machine code that it
produces. Normally this is not necessary as DASM automatically picks the
free space after EASIC {see the section on running the DASM Asaembler).

ORG must be used with care as it is possible to make DJASM overwrite it's
own or BASIC's work areas. (see the description of PPO below if you
think this might be happening).

For example:

2030 ORG 3400 DEFAULT VIDEO PAGE
2040 GVPAGE RMB $200 DEFINE VIDEO PAGE AREA

psp

Thias is used to make DASM display the results of the assembly run on the
monitor or TV. This ia the initial setting and you do not normally need
to use this unless you have used PRT or OFF.

You can slow down the rate at which the lines are displayed by DASM with
an operand parameter on the DSP command. For example: ©O010 DSP 3FFFF

will give the maximum delay of approx. 1 second per line.

PRT

This is used to make DASM print the results of the assembly rum on the
printer.

fou may specify two control character to be sent to the printer at the
end of each page (aee the PAG command below) to make the printer skip to
the top of the next physical sheet of paper. For example if your printer
requirea a $0C to do this then code: PRT $C. This will result in null
(300) and top of page ($0C) control characters being sent to the printer
after the last line on each page. Check the manual for your printer to
find the control charactera that your printer requires. If you do not
vant to use this "page throw" feature or if your printer does not
asupport it then use PRT O.

The number of linea per page is set with the PAG command.

OFF

This is used to atop DASM printiug or displaying anything. thia should
only be used when you have eliminated all the bugs from your program.
You will not be told about errors when you use OFF {except via the Error
Indicator).

ALL

This is used to make 2JASM print all the instructionas that it proceases.
Yfou zan use ALL, CFF and ZRR to select only the parts of your program

that you want to diaplay/print.

Copyright Compusense Ltd. 1983 - Page 2 - All rights Reaerved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

ERR

This is used to make DASM print only the instructionsz which are in
error. Thias is the normal setting.

FML

This is used to make DASM display/print in Long format. This includes
the address in memory and the firat B bytes in hexadecimal. Use FML with
PRT and ALL to get a full listing of you program on your printer. FML is
not recommended for normal use when displaying on your TV/Moniteor
because of the limited 32 character line length.

FMS

This is used to make DASM display/print in Short format. Short format
contains just the BASIC line number and the full instruction. This is
easier to read on the TV/Moniter than the Long format. FMS is the
default setting.

PAG

This is used to make DASM stop after displaying a number of lines on
your TV/Monitor. You can continue by pressing any key except BREAK.
Note: Presaing BREAK at any time stops DASM and returns you to BASIC
mode.

fou can alao use PAG to control the paging when you have specified
coutput to printer using PRT. See the description of the PRT cummand
(above) for full details.

If you use PAG without an operand then DASM will atop at that point (or
atart a new page on the printer). Using PAG with an operand changea the
page size only.

The initial page size is 15. i.e equivalent to PAG 15.

Examplea of use:
0010 PAG 10:DSP $4000:ALL:® STOP EVERY 10 LINES
Q010 PRT SC:PAG 55:PAG:ALL:®™ PRINT WITH 55 LINES PER PAG
FPPO
DASM normally prints during the second pass through your program. The
FPO command make DASM print during the first pass as well. This may be

used to locate certain types of programming error which can cause DASM
to fail during Pasa One without displaying any messages.

Note that forward referencea to labela are always indicated as errors
in Pass One and that these error messagea disappear in Pass Two.

Copyright Compusense Ltd. 1983 - Page 10 - All righta Reserved

g i

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

HOW TO ASSEFBLE AND RUN TOUR PROGRAR

The firat step is to plug in the DASM cartridge to the expansion port on
the right hand side of your computer. CAUTION: you must switch off the
computer whenever a cartridge is to ha inserted or removed.

To assemble a program using DASM you must precede your program with the
SASIC statements CLEAR and zXEC.

CLEAR is used to define the areas which DASM can use for it's label
table (the atring space area ia used for the label table) and the free
apace in memory (after the area allowed for use by BASIC) where DASM can
put Lthe machine ~ode that is generatcd. Each label uses 10 bytea of
memory. Whenr you code CLEAR you must specify an addresa in free memory
out NOT in the BASIC ROM (i.e. below &H8000).

EXEC is usea to execute the DASM asaembler at addreas 38HCFFA.

The last inatruction in your program must be END. If you put an operand
on the END instruction then the value of the operand ia put into the
BASIC EXEC vector. This means .in simple terms that if you put the atart
addreas of your program as the cperand on END then you can execute your
program by uaing EXEC in BASIC or entering EXEC on the keyboard.

For example:

0010 CLEAR 1000,aH6000:EXEC AHCFFA
2015 ®* 100 LABELS - PLACE MACHINE CODE AT 36000
1000 @START EQU * START ADDRESS OF PROGRAM

-+ss your 6809 assembler program

4990 END @START

4999 REM DASM RETURNS TO BASIC HERE - HOW RUN PROGRAM
5000 EXEC

9999 END

By clever use of latels and the FDE/FCB commands you can automaticelly
et DASM to put the length and stairt addreas and other information where
it can be picked up from BASIC eg. at the atart of the program.

:ﬂﬂyriﬂht Compusenae Ltd. 198% - Page 11 - All -ighta Heserved

Having written, assembled and run your program you Wwill probably have
met your first big problem - the program doesn't do what you wanted it
to do.

Unfortunately DASM cannot help you any further with debugging your
program but it's sister cartridge the DEMON monitor has many facilities
for juat this purpose. In particular the setting of breakpointa. DEMON
alsc has some useful routines to make writing programa for the DRAGON

easier.

Whether or not you are using DEMON to debug your program you should
think about how to teat your program when you are deaigning it - not
when you find out that it doean't work. A good design will allow the
testing of parts of the program seperately so that errors can be

isolated more easily.

The final stage of putting the tested parts together will then be a much
more successful and rewarding experience.

WARNINC: SAVE YOUR WORK ON TAFPE FREQUENTLY AS AN UNTESTED ASSEMBLER
PROGRAN CAN DESTROY THE COPY IN MEMORY.

This can happen when an error in your program makes the computer 'lock
up' until it has been awitched off and on again.

Copyright Compuseng, [i4. 1983 - Page 12 - All rights Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY
ERROR MESSAGES

DASM checks your program and produces an error measage if it finds an
error. The following are all the messages with an explanation of why

they are produced.

{E> LABEL?

The label field is incorrect. i.e. not a valid label.
{E> INSTRUCTION?

The instruction is not a valid 6809 instruction or a DASM Aasembler
Directive.

<{E> OPERAHND?

The operand field is in error. The operand may be omitted, not a valid
typg for this instruction (eg. STA #0) or incorrect (eg. LDA ,X- or EXC
AX).

<E> DUPLICATE LABEL

The label has been defined previously in the program. Labels may only be
assigned a value once.

<“E> HEED LONG BRANCH

A Short form BRANCH instruction has been coded but the relative offzet
is too big for 8 bits. Change the inatruction to the Long form (eg. HRA
to LERA) or reatructure the program.

<E> LABEL UNDEFINED

A label value has been used in the operand field but this lall has not
been defined yet. This error occurs when you use a label defined later
in the program on an ORGC or RMB statement as DASM (and most assemblers)
does not allow this. If you cannot eaaily aolve the problem by
restructuring the program then define the label values at a fixed
location by uaing ORG.

¢E> OPERAND TRUNCATED

In a situation were an 8 bit value is required (for example: LDA #VALUE)
a value was found with was too large for 8 bita. The reason for the
arror should be inveatigated. The value has been truncated to B8 bits and
then used as normal.

<E> LABEL TABLE TOO SMALL

The apace for the label table (defined with CLEAR) is tco amall.
femember that you must have 10 bytea for each label that you will use in
your program.

“E>» HOT RAM

This error occurs when you attempt to asaemble into part of the computer
‘opyright Compuaense Ltd. 1983 - Page 13 - All rights Reaerved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

which does not contain Random Access Memory. For example if you write a
long program which extends past the firat 32K of memory (i.e. $TFFF is
the highest location at which you can assemble your program.

You will get this error if you forget the CLEAR before running the
assembler. This error may alao occur if the memory in you computer ia
faulty.

Other errors may also be reported when this error occurs but can be
ignored until all the NOT RAM errors have been resolved.

ERROR INDICATOR

When DASM has finished assembling your program the first byte of DASM's
work area at 8H600 will be set to zero if no errors have oceured, This
1nd1irtnr can be tested with PEEK in BASIC (see the SAMPLE PROGRAM
below).

SAVING YOUR PROGRAM ON TAPE
Use CSAVE to save the source program,

The assembled machine code can be asaved on tape by using the standard
CSAVEM command. To use this you must determine the firat and last
addresses of the program and the execution start addresa. Addresses are
displayed by DASM when you use the Long Format (see FML assembler
directive). The sample program shows one way that the CSAVEM addresses
can be found and used automatically.

four saved machine code can then be reloaded using CLOADM. Remember to
use CLEAR beforehand to reserve space for the program.

Copyright Compusense Ltd. 198% - Page 14 - All rights Reaserved

DASM - Two Pass Symbolic Asaembler for DRAGON/TANDY

SAMPLE PROGRAM

The following program demonstrates how the low resolution video page can
be used by an assembler program. All the poasible characters that can be
diasplayed on the DRAGON/TANDY COLOR are displayed on the screen with a
small delay (needed as the assembler program is so fast). Also
{illustrated are: the uae of the ERROR INDICATOR, saving the assembled
machine code to tape and displaying the Symbol Table.

10 CLEAR 400,3aH4000

15 EXEC A&HCFFA

16 ALL

14 @FROM FDB @FRON,@TO,@START FOR AUTO CSAVEM
20 @START EQU *®

24 CLRA START WITH CHARACTER $00

30 LDX #$400 START OF VIDEO PAGE

40 @QLOOP STA O, X+ CHANGE NEXT BYTE IN VIDEQO PAGE
50 CHPX #30600 REACHED END OF VIDEQ PAGE ?

60 BNE @LOOP LOOP UNTIL END OF VIDEO PAGE

T0 LDX #3400 RESET POINTER TO START OF VIDED PAGE
850 LDY #$8000 DELAY COUNT

90 @DELAY LEAY -1,Y:BNE @DELAY DELAY LOOP

100 INCA DO NEXT CHARACTER

110 BNE @LOOP LOOP UNTIL A IS ZERO AGAIN

120 RTS END OF PROGRAM - RETURN TO BASIC

130 @T0 END @START

400 PRINT"SYMBOL TABLE":POR I=&H4000-400-1 TO &H4000-1 STEP 10

410 IF PEEK(I+4)<>0 THEN FRINT"@";:ELSE 450

420 FOR J=I+4 TO I1+9:PRINT CHRS(PEEK(J));:NEXT J

430 PRINT,HEXS(PEEK(I)®256+PEEK(I+1))

440 WEXT I

450 IP PEEK(A&H600)<>0 THEN PRINT"ERRORS"™:END

460 INPUT"PRESS ENTER TO EXECUTE PROGRAM";X$:EXEC

500 INPUT “SAVE PROGRAM TO TAPE Y/N & ENTER";X3

510 IF X$="N" THEN END ELSE IF X$<>"Y" THEN 500

520 B=A4H4000

530 CSAVEM"SAMPLE",PEEK(B+1)*256+PEEK(B+2),PEEK(B+3)*256+PERK(B+4),
PEEK(B+5)*256+PEEK(B+6)

999 END

Turn your computer off and plug in the DASM cartridge. Turn your
computer on, type this program in and then RUN it. It ia not neceasary
to type in the commenta. If any errors are detected by JASM, correct
them and IUN again.

If you delete Line 16 then only errora will be displayed.

Copyright Compusense Ltd. 1987 - Page 15 = All righta Reserved

DASM - Two Pass Symbolic Assembler for DRAGON/TANDY

The DASM Assembler is an original software product written by:

COMPUSENSE Ltd
286D GREEN LANES
PALMERS GREEN
LONDON N13 S5XA

Telephone 01-882-0681/6936
Telex 8813271 GECOMS G

COMPUSENSE was established in 1979 and has specialised in software and
hardware for the Motorola 6800, 6809 and 68000 microprocesaors.

COMPUSENSE supplies hardware and software for systems based on the S5-50°

BUS in addition to an expanding range of products for the DRAGON and
TANDY COLOUR computers.

All enquiries are directed to the above address.

A series of programs written using the DASM assembler with the full
source are available. Titles include: a Disassembler and The Game of
Life.

DRAGON is a trade mark of DRAGON DATA Ltd.

TANDY is a trade mark of the TANDY CORPORATION.

Copyright Compusense Ltd. 1983 All Rights Heaerved

	compusense-dasm-manual-01
	compusense-dasm-manual-02
	compusense-dasm-manual-03
	compusense-dasm-manual-04
	compusense-dasm-manual-05
	compusense-dasm-manual-06
	compusense-dasm-manual-07
	compusense-dasm-manual-08
	compusense-dasm-manual-09
	compusense-dasm-manual-10
	compusense-dasm-manual-11
	compusense-dasm-manual-12
	compusense-dasm-manual-13
	compusense-dasm-manual-14
	compusense-dasm-manual-15
	compusense-dasm-manual-16
	compusense-dasm-manual-17
	compusense-dasm-manual-18
	compusense-dasm-manual-19
	compusense-dasm-manual-20

